日本韩国在线视频-日本韩国中文字幕-日本韩经典三级在线播放-日本韩一级二级三级-国内精品久久久久丫网址-国内精品久久久久影院欧美

技術文章您現在的位置:首頁 > 技術文章 > ClickChemistryTools基于點擊化學的糖譜學研究解決方案

ClickChemistryTools基于點擊化學的糖譜學研究解決方案

更新時間:2021-06-24   點擊次數:2108次

Click-&-Go IsoTAG Kit for Profiling Intact Glycopeptides

 

While there has been much interest in profiling the intact glycoproteome, the complexity of glycoproteoforms (and more broadly, all proteoforms) remains challenging to completely define. Mass spectrometry (MS) is commonly employed for characterization of complex proteomic samples. A popular strategy for protein identification is the bottom-up shotgun proteomics approach. In this method, a mixture of proteins is subjected to proteolytic digestion, the resulting peptides are separated by LC and detected by MS, and their parent proteins are inferred from the assigned peptide sequences.

 

To convert MS data acquired from proteolytic digests into protein identifications, tandem MS can be used to obtain sequence information for individual peptides, followed by comparing an in-silico proteolytic digest of an organism’s proteome. Typically, only the most abundant peptides are selected for fragmentation (Figure 2), whereas data for those peptides in relatively low quantities are not obtained. An inherent problem in shotgun proteomics is identifying proteins of low abundance, such as biomarkers for disease states, against a background of proteins whose concentrations can span up to 12 orders of magnitude.

Figure 1. Metabolic labeling with a chemically functionalized glycan, chemical taggingand enrichment using an isotopic recoding affinity probe

 

 

To address the unique challenges of the global characterization of the intact glycoproteome, a mass-independent chemical glycoproteomics platform, termed isotope targeted glycoproteomics (IsoTag) was developed by the Carolyn Bertozzi group. The platform is comprised of four central components: (i) metabolic labeling with a chemically functionalized glycan, (ii) chemical tagging and enrichment using an isotopic recoding affinity probe, (iii) directed tandem MS, and (iv) targeted glycopeptide assignment (Figure 2).

 

                                                          

Figure 2. Traditional proteomics and Iso-Tag-directed proteomics workflow

 

IsoTaG is performed by isotopic recoding and enrichment of metabolically labeled glycoproteins followed by directed tandem MS (MS2 or MSn) analysis and intact glycopeptide assignment. Isotopic recoding is accomplished by metabolic labeling of cell or tissue samples with azide- or alkyne-functionalized sugars, followed by chemical conjugation with a biotin probe bearing a unique isotopic signature.

 

Some examples of sugar labels are peracetylated N-azidoacetylmannosamine (Ac4ManNAz), which is converted to the corresponding azidosialic acid (SiaNAz), and peracetylated N-azidoacetylgalactosamine (Ac4GalNAz), which is metabolized to label glycans possessing N-acetylglucosamine (GlcNAc) or N-acetylgalactosamine (GalNAc) (not provided with kit).

 

In order to perform isotopic tagging, the kit provides two cleavable IsoTaG probes encoded by zero [M] and two [M + 2] deuterium atoms. Probes with different encoding can be provided by Click Chemistry Tools though custom synthesis. The IsoTaG probe with zero, and that with two deuterium atoms [M, M + 2] can be used in different proportions; 1:1, 1:2, 1:3 and 1:4. Pattern recognition with isotopic ratio of 1:3 showed the highest fidelity.

                   Figure 3. Cleavable IsoTaG probe encoded by zero deuterium atoms [M] (R = H) and two deuterium atoms [M+2] (R = D)

 

Through these probes, a unique isotopic signature is embedded exclusively into the glycopeptides. The isotopic signature serves as a computationally recognizable full-scan MS reporter. A computational algorithm, termed isotopic signature transfer and mass pattern prediction (IsoStamp), for the detection of recorded species in full-scan mass spectra, was also developed by the Carolyn Bertozzi group. IsoStamp compares observed and predicted isotopic envelopes to identify chemically tagged species in full-scan mass spectra.

 

IsoTag has the potential to enhance any proteomics platform that employs chemical labeling for targeted protein identification, including isotope-coded affinity tagging, isobaric tagging for relative and absolute quantitation, and chemical tagging strategies for post-translational modification.


Description                                          Product #       Pkg. Size       Price(¥)


 

Click-&-Go™ IsoTag Kit for Intact Glycopeptides Profiling *azide modified proteins*      1448       1 kit            8900.0   

Click-&-Go™ IsoTag Kit for Intact Glycopeptides Profiling *alkyne modified proteins*     1449       1 kit            8900.0

DADPS H2/D2 Biotin Azide, 2 mg each                                     1450          1 set           6580.0    

DADPS H2/D2 Biotin Alkyne, 2 mg each                                     1451         1 set           6580.0



Selected References:

1. Woo, C. M., et al. (2017). Development of IsoTaG, a Chemical Glycoproteomics Technique for Profiling Intact N- and O?Glycopeptides from Whole Cell Proteomess. J. Proteome Res., 16: 1706−18.

2. Woo, C.M.., et al. (2017). Mapping and Quantification of Over 2000 O-linked Glycopeptides in Activated Human T Cells with Isotope-Targeted Glycoproteomics (Isotag). Mol. Cell.Proteomics., 17: 764−75.

3. Gao, G., et al. (2017). Small Molecule Interactome Mapping by Photoaffinity Labeling Reveals Binding Site Hotspots for the NSAIDs. J. Am. Chem. Soc., 140: 4259−68.

4. Woo, C.M., et al. (2015). Isotope-targeted glycoproteomics (IsoTaG): a mass-independent platform for intact N- and O-glycopeptide discovery and analysis. Nat Methods., 12: 561−7.

5. Weerapana, E., et al. (2010). Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature, 648: 790−5.

Iso-Tag products are covered by U.S. Patent No.: 10,114,026.


This product may be used for research purposes only. It is not licensed for resale and may only be used by the buyer. This product may not be used and is not licensed for clinical assays, where the results of such assays are provided as a diagnostic service. If a diagnostic or therapeutic use is anticipated, then a license must be requested from the University of California. The availability of such diagnostic and therapeutic use license(s) cannot be guaranteed from the University of California.

靶點科技(北京)有限公司

靶點科技(北京)有限公司

地址:中關村生命科學園北清創意園2-4樓2層

© 2025 版權所有:靶點科技(北京)有限公司  備案號:京ICP備18027329號-2  總訪問量:317269  站點地圖  技術支持:化工儀器網  管理登陸

主站蜘蛛池模板: 亚洲国产日韩a在线亚洲 | 69综合网| 色综合久久久久久久久五月 | 在线观看网站国产 | 欧美xxxxx性视频 | 亚洲天堂视频在线 | 国产产一区二区三区久久毛片国语 | 四虎国产精品永久地址48 | 国产亚洲精品俞拍视频 | 99久久国产免费福利 | 欧美黑人粗硬大在线看 | 色费女人18毛片a级视频在线 | 操女穴| 天天舔天天干 | 国产高清在线精品一区a | 国产深夜福利19禁在线播放 | 美国免费黄色片 | 麻豆国产福利91在线 | 免费人成网站在线高清 | 精品高清国产a毛片 | 在线精品欧美 | 麻豆免费在线视频 | 国产91欧美 | 91亚洲国产| 色综合天天综合网国产成人 | 小婷的嫩苞在线播放 | 亚洲视屏在线观看 | 麻豆精品免费视频入口 | 国产成人精品免费青青草原app | 美国性大片在线观看免费 | 亚洲一区二区三区欧美 | 久久久久久久久女黄 | 99国产精品九九视频免费看 | 日日夜夜操美女 | 国产亚洲欧美另类一区二区三区 | 久久久久久一级毛片免费野外 | 国产成人1024精品免费 | 亚天堂| 欧美中文在线视频 | 国产在线xvideos | 日本国产网站 |